HIF1/2α mediates hypoxia-induced LDHA expression in human pancreatic cancer cells
نویسندگان
چکیده
Glycolysis is a typical conduit for energy metabolism in pancreatic cancer (PC) due to the hypoxic microenviroment. Lactate dehydrogenase A (LDHA) catalyzes the conversion of pyruvate to lactate and is considered to be a key checkpoint of anaerobic glycolysis. The aim of the present study was to explore the mechanism of interactions between hypoxia, HIF-1/2α and LDHA, and the function of LDHA on PC cells by analyzing 244 PC and paratumor specimens. It was found that LDHA was over-expressed and related to tumor stages. The result of in vitro study demonstrated that hypoxia induced LDHA expression. To explore the relationship between HIF and LDHA, chromatin immunoprecipitation assay and luciferase assay were performed. The result showed that HIF-1/2α bound to LDHA at 89bp under the hypoxic condition. Furthermore, knockdown of endogenous HIF-1α and HIF-2α decreased the LDHA expression even in the hypoxic condition, which was accompanied with a significant decrease in lactate production and glucose utilization (p < 0.01). Immunofluorescence in the 244 specimens showed that HIF-1/2α was over-expressed and associated with LDHA over-expression (p < 0.0001). Forced expression of LDHA promoted the growth and migration of PC cells, while knocking down the expression of LDHA inhibited the cell growth and migration markedly. In summary, the present study proved that HIF1/2α could activate LDHA expression in human PC cells, and high expression of LDHA promoted the growth and migration of PC cells.
منابع مشابه
HIF-2α dictates the susceptibility of pancreatic cancer cells to TRAIL by regulating survivin expression
Cancer cells develop resistance to therapy by adapting to hypoxic microenvironments, and hypoxia-inducible factors (HIFs) play crucial roles in this process. We investigated the roles of HIF-1α and HIF-2α in cancer cell death induced by tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) using human pancreatic cancer cell lines. siRNA-mediated knockdown of HIF-2α, but not HIF-...
متن کاملHIF-2α mediates hypoxia-induced LIF expression in human colorectal cancer cells
Leukemia inhibitory factor (LIF), a multi-functional cytokine, has a complex role in cancer. While LIF induces the differentiation of several myeloid leukemia cells and inhibits their growth, it also promotes tumor progression, metastasis and chemoresistance in many solid tumors. LIF is frequently overexpressed in a variety of human tumors and its overexpression is often associated with poor pr...
متن کاملThe effect of HIF-1α on glucose metabolism, growth and apoptosis of pancreatic cancerous cells.
OBJECTIVES The aim of this study is to explore the possible role of HIF-1α in glucose metabolism, proliferation and apoptosis of pancreatic cancerous cells. METHOD The pancreatic cancerous BxPC-3 cells were cultured in normoxia or hypoxia (3% O2), respectively. Cell proliferation was determined by MTT assay, apoptosis was determined by Annexin V/PI staining. Expression of Pyruvate dehydrogena...
متن کاملHIF-2α promotes the formation of vasculogenic mimicry in pancreatic cancer by regulating the binding of Twist1 to the VE-cadherin promoter
Vasculogenic mimicry (VM) is a blood supply modality that occurs independently of endothelial cell angiogenesis. Hypoxia and the epithelial-mesenchymal transition (EMT) induce VM formation by remodeling the extracellular matrix. Our previous study demonstrated that hypoxia-inducible factor-2 alpha (HIF-2α) promotes the progress of EMT in pancreatic cancer; however, whether HIF-2α promotes VM fo...
متن کاملHistone demethylase JMJD2C is a coactivator for hypoxia-inducible factor 1 that is required for breast cancer progression.
Hypoxia-inducible factor 1 (HIF-1) activates transcription of genes encoding proteins that play key roles in breast cancer biology. We hypothesized that interaction of HIF-1 with epigenetic regulators may increase HIF-1 transcriptional activity, and thereby promote breast cancer progression. We report that the histone demethylase jumonji domain containing protein 2C (JMJD2C) selectively interac...
متن کامل